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Abstract 

 When using Intrusion Detection/Prevention (IDP) Systems in computer 

networks, it’s important that we detect malicious traffic quickly. In the ideal case, 

IDP systems should not cause excessive packet drops, which may cause unnecessary 

retransmission.  IDP systems use multiple engines to prevent this issue however 

there is still communication lacking among them. So it’s proposed that we introduce 

a Management Engine (ME) that will monitor the buffer levels of the engines as well 

as the state of each flow that was processed.  The benefits of the engine is as follows: 

decreasing overall packet loss, stabilizing quickly with bursty traffic, and minimal 

interruption when updating the flow state, for the packets arriving out of order or 

are sent to different engines.  An additional function of the ME is monitoring the 

arriving traffic rate so that it will notify the engines to adjust their parameters for 

peak overall system performance. 

 

Introduction 

 Imagine water is flowing from a river to a nearby village. Assuming the 

villagers dispose of the water as fast as the water arrives, no issues should arise. 

However, if that water begins to pick up speed and the villagers cannot dispose of it 

as quickly, flooding can occur. Heavy flooding means everything is put on hold until 

water level is manageable.  A solution will be to place wells in between the river and 

the village, customized with a heating element placed in the bottom. The heating 

element will help maintain water levels in the well, allowing it to be able to receive 

water at any time.  Essentially this is similar to the works of queues and a sufficient 

amount of queues will affect the throughput performance in a computer network.  A 

further improvement would be to have a sensor placed at the river dictating the 

pace of water heading downstream. This sensor will then communicate with the 

heating elements so that they can dynamically adjust to match the speed of the 

water.  If the speed of the water is slow then we decrease the amount of heat and if 



more than an increase is necessary. Applying this concept in computer networks, we 

would be able to adjust our engine parameters so that they can adapt to the ingress 

flows and become more efficient.  

 Intrusion Detection/Prevention systems are put into place to help policy 

traffic to seek malicious data and prevent it from doing serious damage. If damage is 

done, ideally we want to contain and mitigate it quickly. While this is our goal we 

aim to perform these tasks with little effect to the overall system throughput. If we 

find viruses, but our system throughput is cut in half, we do not have a very efficient 

system.  Using multiple queues/engines to simultaneously process several flows 

helps with analyzing multiple flows quickly, however if the engines are not 

communicating with each other, how do we know what has been processed? When 

packets arrive out of order, or arrive to different engines; we may suffer a high cost 

of time in determining which data streams contain the malicious attack.  With the 

use of a management entity, we avoid such issues.  The management entity is 

responsible for flow state monitoring. Whether through passive or aggressive 

methods, the flow state will always be known regardless of which engine is 

processing the packet. However the benefits do not end here. The management 

entity is also responsible for threshold monitoring and incoming arrival rate.  These 

will help decrease total packet loss as well as prevent the underutilization of 

queues/engines.  

 

Formulation  

 In a computer network with several arriving flows each having their own 

rate; there are also several engines with variable rates servicing them.  Data arrives 

periodically and during the off period, the engines will solely service the packets 

that previously arrived. This system must also be able to handle a burst flow that 

arrives occasionally.  The engines will be bounded so that the next available engine 

will handle the packets arriving above this boundary.  Once an engine has reached 



its threshold value, it would no longer accept any new arriving packets until the 

engine is empty. However the engine can be modified to accept packets prior to it 

completely emptying in attempts to maintain a high throughput.  We will monitor 

the load of the buffers over a limited time span and compare results 

 Several questions arise before the experiment is conducted. Should we use 

smaller capacity engines as opposed to a large engine with a variable threshold?  

Will the performance vary greatly when the burst traffic arrives?  How would the 

system perform as we increase the amount of flows? If the service rates of the 

engines change, how does this affect the overall throughput of the system?  I feel 

confident that after the analysis, these questions will be answered.  

 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

Analysis  

Figure 1 

 

Fig 1. The engine load over time with one engine and threshold set to maximum buffer size which is 

50 packets 

Figure 2 

 

Fig 2. The packet drops experience over time when the engine becomes filled. 

 



Figure 3 

 

Fig 3. Five engines with the threshold set to the maximum buffer size. 

 

 

 

 

 

 



Figure 4 

 

Fig 5. Five engines with threshold set to 70% of maximum buffer size 

 

 

 

 

 

 

 



Figure 5 

 

 

 

Fig 5. Five engines with threshold set to 50% of the maximum buffer size. 

 

 

 

 

 

 



 

Figure 6 

 

Figure 7 

 

 

 

 

 

Fig 6. 5 engines with threshold set as the maximum buffer size wit the introduction of  burst  traffic 

 

 

Figure 7 

 

 

 

 

 

 

 

Fig 7. 5 engines with threshold set as 70 % the maximum buffer size wit the introduction of burst 

traffic 



Discussion 

 

 Figures 1 and 2 show normal traffic conditions with only one engine.  Notice 

the periodic curve for the packets that are dropped. The threshold for this engine is 

the maximum capacity of the buffer.  New arriving packets will be dropped and will 

not be accepted until the engine’s queue is fully depleted.  Fortunately there was an 

off period during data arrival, which helped ease some congestion. If no off period 

were present, we would suffer a higher packet loss. Too many dropped packets 

means the sender is forced to reduce its sending rate, decreasing system 

performance.   Additional engines will delay packet loss, but ultimately the last 

engine will experience similar results as the system with only one engine present. 

Figures 3, 4 and 5 show multiple engines with threshold monitoring.  As we 

decrease our threshold, the engines stop receiving packets earlier and newly 

arriving packets are sent to the next engine.  While the next engine fills up, the 

previous engine is processing the remaining packets in its buffer.  When this engine 

processes all remaining packets it will now be able to accept new arrivals. The faster 

the engine reaches its threshold; less time is needed before the engine is available 

again.  

Figures 6 and 7 show higher capacity engines to accommodate the newly 

introduced burst in traffic. The addition of sudden increase in traffic makes the 

engine approach threshold faster.   It is here we experience a trade off, we cannot 

accept as much packets as in the initial round; but with so many engines we suffer 

minimal loss. 

As we increase the amount flows arriving into the system or experience a 

burst of traffic, our engines are able to reach the end of their boundaries faster. The 

benefit, although indirectly is that we start accepting new packets faster. Accepting 

new packets faster means packet dropping is kept to a minimum. We can further 

improve these engines by starting accepting packets earlier than when the queue is 



fully depleted. That would lead to even fewer packet drops and converge to a high 

throughput quickly.  

 

Conclusion  / Future Work 

 

 There are several things to consider when choosing a threshold size. What 

kind of traffic will be experienced? Would we have a steady stream of arriving data? 

Would there be periods of time when no traffic is arriving? In my analysis I 

presented both periodic arrivals along well a burst arrival. However I did noticed a 

pattern existed. If the arriving data had no intervals of off periods, the buffers would 

fill up faster, however an equilibrium state will be quickly reached. 

 This concept through simulation has been theoretically proven, however I 

feel it could be taken a step further. If we use variable service rates for the engine 

along with adaptive threshold monitoring, system throughput should increase.  

Large buffer engines may not be needed using a combination of the two.  I believe 

less buffer space is required when using a combination of both techniques. This will 

lead to cheaper cost without sacrificing our throughput. 

 Also further analysis of flow state needs to be done.  When we have 

intermingled flows, there is no guarantee that flows will be processed together in 

the same engine, and if the engines do not communicate how would we know what 

part of a flow was processed. Also if it’s possible, we need to gain access to that 

information quickly.  If we make the ME solely responsible for this, whether through   

passive or aggressive updating, we will be successful at operating near or at line 

rate.  

Appendix 

function [D] = arrival3(c, a, u,p, j, m ) 

%ARRIVAL more than one engine 



%   Detailed explanation goes here 

%ar = a * b; % arrival rate 

%sr = u * b; % service rate 

L= c; %* b;% L the buffer capacity with c the amount of packets of 

size b 

T= p * L; % T is the threshold with p a percentage of the Buffer 

capacity 

 

D= zeros(j,m); 

Pd=zeros(j,m); 

norma=a; 

bursta=2*a; 

 

 

e=1;% initializing engine 

D(1,1)= sum(a); 

s = 2;% initializing state 

maxit = 0; %maximum iterations 

while maxit < (m-1) %go trhough a maximum iteration of m 

    if mod(maxit,2)~=0 % the mths state traffic is arriving and 

being processed 

         

        if mod( maxit, 7)==0%every 7th state traffic doubles in rate 

            a=bursta; 

            if D(e,(s-1))< T 

            D(e,s) = D(e,(s-1))+ sum(a)-u(e); 

            s=s+1; 

            end 

        end 

        if mod (maxit,7)~=0% normal traffic flow 

            a=norma; 

            if D(e,(s-1))< T 

            D(e,s) = D(e,(s-1))+ sum(a)-u(e); 

            s=s+1; 

            end 

        end 

         

 

         

        if D(e,(s-1)) > T 

 



            counter =D(e,(s-1))-T; 

            D(e,s-1)=T ; 

            for i= s:m 

                D(e,i)= D(e,(i-1))-u(e); 

            end 

 

            if e< j 

                e = e+1; 

                s= 1; 

                D(e,s)=counter;% preparing new engine 

            end 

 

 

            if s<m 

                s=s+1; 

                maxit=0; 

            end 

 

        end 

 

    end 

 

    if mod(maxit,2)== 0% the traffic is not arriving but just being 

processed 

 

        D(e,s) = D(e,(s-1))-u(e); 

        s=s+1; 

 

    end 

 

    maxit = maxit + 1; 

 

end 

 

plot((1:m),D((1:e),(1:m))); 

 

 


